Hubunganantara besar sudut pusat, panjang busur, dan luas juring lingkaran dirumuskan sebagai berikut: Rumus Panjang Busur dan Luas Juring Lingkaran Perhatikan gambar lingkaran di atas! $1.\ \dfrac{\alpha}{360^o} = \dfrac{\widehat{AB}}{2\pi r}$ $2.\ \dfrac{\alpha}{360^o} = \dfrac{Luas\ Juring\ OAB}{\pi r^2}$ Siswadapat menyatakan hubungan sudut pusat dan sudut keliling jika menghadap busur yang sama ; Siswa dapat menghitung besar sudut keliling jika menghadap diameter atau busur yang sama ; Siswa dapat menghitung panjang busur, luas juring ; Siswa dapat menggunakan hubungan sudut pusat, panjang busur, luas juring dalam pemecahan masalah HubunganSudut Pusat, Panjang Busur dan Luas Juring Pada sebuah lingkaran berjari-jari r terdapat dua juring dengan sudut pusat dan panjang busur yang berbeda, yaitu busur AB dan juring AOB dengan sudut pusat AOB = x o, dan busur CD dan juring COD dengan sudut pusat COD = y o. Perbandingan panjang busur AB dan CD adalah : Busurlingkaran berupa garis lengkung yang merupakan bagian dari keliling lingkaran. Luas juring merupakan daerah yang dibatasi oleh sebuah busur dan dua buah jari-jari. Hubungan dari ketiga unsur-unsur lingkaran tersebut adalah besar panjang busur dan luas juring pada suatu lingkaran berbanding lurus dengan besar sudut pusatnya. hubungansudut pusat, panjang busur, dan luas juring lingkaran dengan cara mengukur dan membuat perbandingan dari sudut pusat, panjang busur dan luas juring dari potongan-potongan pemodelan martabak. Dari serangkaian aktivitas yang telah dilakukan membantu meningkatkan pemahaman siswa tentang konsep hubungan sudut pusat, panjang busur, dan luas kata sindiran buat bos yang tidak adil. Pada pembahasan kali ini, kita akan mempelajari hubungan antara sudut pusat, panjang busur, dan luas juring pada sebuah lingkaran. Sudut pusat adalah sudut yang dibentuk oleh dua jari-jari yang berpotongan pada pusat lingkaran. Busur lingkaran berupa garis lengkung yang merupakan bagian dari keliling lingkaran. Sedangkan, Luas juring merupakan daerah yang dibatasi oleh sebuah busur dan dua buah jari-jari. Hubungan dari ketiga unsur-unsur lingkaran tersebut adalah besar panjang busur dan luas juring pada suatu lingkaran berbanding lurus dengan besar sudut pusatnya. Coba perhatikan gambar di bawah ini. Dari gambar di atas, jika dibandingkan antara sudut pusat AOB dengan COD, kemudian panjang busur AB berbanding panjang busur CD, serta perbandingan luas juring OAB dengan OCD akan diperoleh nilai perbandingan yang sama. Hal ini dapat dituliskan sebagai berikut. Sekarang, misalkan COD = satu putaran penuh = 360o maka panjang busur CD menjadi keliling lingkaran = 2pr, dan luas juring OCD menjadi luas lingkaran = pr2 dengan r jari-jari, akan tampak seperti gambar berikut. Dari gambar tersebut diperoleh. Dengan demikian, diperoleh rumus panjang busur AB dan luas juring OAB sebagai berikut. Jadi untuk menentukan panjang busur dan luas juring suatu lingkaran minimal kita harus mengetahui besar sudut pusatnya serta jari-jari atau diameter lingkaranya. Dari rumus di atas kita juga bisa menentukan luas tembereng AB Tembereng AB = Luas juring OAB – Luas Segitiga ABO Sekarang coba perhatikan gambar di bawah ini! Pada gambar di atas terdapat juirng lingkaran AOB luas yang diarsir dengan sudut pusat α baca alfa dan jar-jari r. Apa yang akan terjadi jika sudut pusat α diperbesar menjadi β baca betta seperti gambar di bawah ini? Ternyata setelah sudut pusat α diperbesar menjadi β maka luas juring AOB juga semakin membesar. Ini sesuai dengan konsep perbandingan senilai atau seharga, di mana jika sudut pusat lingkaran diperbesar maka luas juring lingkaran tersebut juga ikut menjadi tambah besar, begitu juga sebaliknya jika sudut pusat lingkaran diperkecil maka luas juring lingkaran juga akan mengecil. Sekarang bagaimana kalau sudut α tersebut diubah menjadi satu lingkaran penuh 360°? Jika sudut pusat diubah menjadi satu lingkaran penuh maka luas juringnya menjadi luas lingkaran. Dari pernyataan tersebut dapat ditarik kesimpulan bahwa hubungan antara besar sudut pusat, luas juring, dan luas lingkaran yakni “luas juring per luas lingkaran sama dengan sudut pusat per sudut satu lingkaran penuh 360°” Secara matematis pernyataan tersebut dapat dirumuskan Juring/Luas = Sudut Pusat/360° Untuk memantapkan pemahaman Anda mengenai hubungan sudut pusat, luas juring dan luas lingkaran. Perhatikan dengan baik-baik contoh soal di bawah ini. Contoh Soal 1 Perhatikan gambar di bawah ini! Jika besarnya α = 36° dan r = 14 cm. Hitunglah luas juring AOB? Penyelesaian Untuk menjawab soal di atas Anda harus mencari luas lingkaran tersebut yaitu L = πr2 L = 22/7 . 14 cm2 L = 616 cm2 Sekarang cari luas juring AOB dengan konsep perbandingan nilai yaitu Juring/Luas = Sudut Pusat/360° AB/616 cm2 = 36°/360° AB/616 cm2 = 1/10 AB = 616 cm2/10 AB = 61,6 cm2 Jadi, luas juring AOB adalah 61,6 cm2. Contoh Soal 2 Perhatikan gambar di bawah ini! Jika luas juring AOB = 462 cm2 dan r = 21 cm. Hitunglah besar sudut pusat β? Penyelesaian Untuk menjawab soal di atas Anda harus mencari luas lingkaran tersebut yaitu L = πr2 L = 22/7 . 21 cm2 L = 1386 cm2 Sekarang cari besar sudut pusat β dengan konsep perbandingan senilai yaitu Juring/Luas = sudut pusat/360° 462 cm2/1386 cm2= β/360° β = 462 cm2/1386 cm2. 360° β = 120° Jadi, besar sudut pusat β adalah 120°. Soal Tantangan Perhatikan gambar di bawah ini! Jika besarnya α = 72° dan luas juirng AOB = 770 cm2. Hitunglah luas lingkaran dan jari-jarinya?

hubungan sudut pusat panjang busur dan luas juring